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A two level sequential decision formulation for, the control of

interconnected stochastic linear discrete-time systems is investigated.

An interconnection of several systems is considered, whereby each

subsystem has a decision maker, and an associated quadratic cost

function. One of the decision makers is designated as a leader or

coordinator and his control strategies are to be chosen prior to those

of the others. The information available to each decision maker may be

different from those of the others. The second level decision makers

are vegarded as followers in the context of Stackelberg strategies.

Their strategies are in accordance with the Nash equilibrium concept or

Pareto optimal concept except that the coordinator's strategy is known

I to all of them. The coordinator chooses his strategy under the

assumption that the followers will fully exploit the prior announcement

2 of his strategy. Centralized and deuenLr'alized inrformation are

considered. Dynamic programminS is employed to derive the recursive

equations for determining the control laws for, each subsystem.

Decentralized information structure is more attractive since each

subsystem control law is based only on local measurements. However a

two-point boundary value problem has to be solved. A simple alcorithm

is suggested but conditions for convergence are not yet available.

Finally, a decentralized Stackelbergr strategies for an interconnected

power system is suggested. The design procedure emphasizes proportional

plus integral control in the context of" Stackelberg strategies.
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I. INTRODUMCTION

1 1Tn ucim

A multi-level structure for a large scale system appears rather

naturally in practice. It is the consequence of an effort toward

efficient utilization of the available resources or the inherent

limitations of the elements out of which the system is built. An

interconnected power system provides an important example of a class of

large-scale systems.

A significant develooment in large-scale system theory is the

concept of multi-person stochastic games with nonclassical information

patterns and their implications on decentralized and hierarchical

control strategies (1,4,12-15,42,43,45,60,62]. It is evident that a

theory of coordination using the bargaining approach (15) is an

important and interesting avenue for new research.

The main object of this thesis is to investigate Stackelberg

coordination for decentralized stochastic control. A strong motivation

for this study is its potential application to decentralize control

problems such as those found in an interconnected power system which can

be described as a collection of subsystems, each of which is called a

control area. Each area is responsible for meeting its obligation to

maintain the appropriate system frequency and supply its own load

demand. Also, each area provides mutual assistance to its neighbours in

accordance with the basic operating policy of interconnected power

systems (231. When the interconnected network is small centralized
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techniques can be used quite effectively (19,20,23,25,33,39,57].

However, in the more gcncral Case the cmmii tions/omputational costs

involved in implementing a centralized controller often become

prohibitive and decentralized of some sort becomes essential.

We will investigate both the theoretical framework and a potential

practical application of Stackelberg coordination for decentralized

stochastic control of general organizational forms of large scale

system. These systems may be controlled by multiple decision makers

having different models, different information sets and different

objective functionals. Our approach will be based on differential games

(16-18,47-53], stochastic control [2-3,5,30,37,38,42,54,63,64) and

electric power system control :19,20,23,25,33,39,57]

1.2 Literature Survey

The design of large, complex systems invariably involves

decomposition of the system inco a number of smaller subsystems each
with its own objective functions and constraints (40]. The resulting

interconnection of subsystems may take on many forms, but one of the

most common is the hierarchical form in which a given level subsystem

controls or coordinates the subsystems on the level below it and in turn

is controlled by the subsystems on the level above it. The inforniation

available to a subsystem on a given lvel and the way such a subsystem

can make use of the information to influence or control another

subsystem has been the object of' much study.

II
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Decentralized information among decision makers was first studied

in the static team theory of Radner [1111). For the dynamic case2, H.S.

Witsenhausen (61-63] was the first who showed that the linear auadratic

Gaussian problem is nontrivial when the information pattern is

nonclassical. Chong and Athans (16] imposed constraints on the control

structure of the LQG system having different information sets. They

showed that the parameter matrices of each dynamic controller could then

be globally optimized by solving a deterministic matrix optimal control

problem. Ho and Chu [13,27] have demcnstrated that certain nonclassical

stochastic control problems admit a linear solution. Sandell and Athans

(45) have shown that LQG problems with a unit time delay of information

exchange admit a linear optimal decision rule, which can be calculated

explicitly. The results appeared to be promising as far as their

applicability to decentralized control theory is concerned. With

decentralized information, there is a trade-off between information

efficiency and computation efficiency. Chong and Athais (141] assumed

that the "coordinator" was allowed to "interfere" only once in a while.

When the coordinator is acting open-loD the lower level problems can be

decomposed completely.

Although different infomation sets are available to each

controller, there is cooperation among the different controllers because

they all try to minimize the same cost functional in the framework of

team theory. This type of a situation can be described as the

"cooperative and partially decentralized case" in large scale system

theory.



It appears that a theory of coordi-mation using the bargaining

approach ,oold also be developed using the same framework. It certainly

represents an important and interesting avenue for new roserch. This

has not been attempted until very recently. Cruz (15) proposed the

extension of Stackelberg stt'ategies to the coordination of several

subsystems.

One could naturaUli expect that g.ime theory 1.k of considerable use

in bargaining. In fact, game theorv has already been used to study

bargaining type situation between or'ganizations in an economy or a

sociaty (58,59]. The ides of using control theory to solve games with

dynamic evoluation was initiated by Isaacs (291. The games Isancs

studied were primarily determLnistie zero-sum slames. Later a more

general concept of differential games known as the theory of N-playor

differential games has ben introduced. Stavr and Ho [117,118) considered

non-zero sum differentlnamles with solution concepts or, rationales

such as Nnh, Pareto and minimnax In a lyl),,1te son:e. Th ,onleepts ot

closed-loop and open-loop solutions wore adapted from modern control.

theory to dynamie game t heorv, and r,,lat,.n to Lth, ela s of' idmisslb.e

s1trat I l n par tj cu ta r, nt;erost h.1,3 been 'ocnsel on tht

doterminati on of Naish oaul I i il ',I t ,.g ies for, dot'rm 1. i st tc

linear-quadratio nonzero-um dLfevontital . ,e2 with dynamic Lin'ormation

striio turs ([ll'-il01]. Most of th,, (qnllhibr im sohilLions, found in) the

literitures for such games have ben 1 n,,ir in the Infor'mation availble

to each player. only RNecent ly, '. Bannr [7] ha:! hown, v ia .

counterexainple, that when at; nst o.fl 4'(' the pidvrs hns ocoss to

ii
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closed-loop information, such games admit non-unique and nonlinear

equilibrium solutions. Recently, Cruz et al. (16,49-53) have

introduced the Stackelberg strategy developed in static games [58] to

dynamic games. The feedback Stackelberg solution concept (17] has been

extended to a class of stochastic games by Castanon and Athans (18].

The theory of stochastic dynamic games is based on the works of

Witsenhausen [61-641], but earlier, Rhodes and Luenberger (42,113), and

Behn and Ho (11] considered the problem of zero-sum dynamic games with

imperfect information. The restriction of the transfer of information

through decision was discussed by Aoki [1] while considering equilibria

in Nash games.

Interconnected electric energy systems provide an important example

of a class of large-scale systems. Tn several papers

(19,20,23,25,33,39,57], attempts have been made to analyze the load

frequency controller of an interconnected power system via modern

optimal control theory. Since the solution proposed by Elgerd (25] is

based on the standard linear regulator theory for disturbance free

dynamic systems, it neither eliminates the steady-state errors of

frequency and tie-line flows, caused by system load disturbance, nor

provides the desired generation distribution. However, a resonable

dynamic model was given. A new design procedure for load and freauency

control was developed later by Calovic (19,20] which avoids all the

short comings of Drevious solutions. The procedure used is to adjoin

the integral of each area control error (ACE) to the system state
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variables. These new state variables as well as the original system

state variables are included in the cost functional. As a result, all

areas capable of doing so will drive their area control errors to zero

in steady-state provided the system is stable. Recently, Kwatny [33]

suggested that when energy source response limitations are recogri.zed,

the load frequency control (LFC) problem should be viewed as a

"tracking" problem rather than a "regulator" problem. The estimation

and prediction of load are used to coordinate generation in each area so

as to regulate power flows and frequencies.

1.3 Problem Area -and Methodologv

The coordination of a large scale system, which has the following

characteristics (15]: 1. two or more decision makers having different

models, 2. different information sets available to the decision makers,

and 3. different objective functionals, using differential games

approach represents an important and interesting area for research. We

will investigate, in details, Stackelberg Strategies for multilevel

systems. 'rho leader who acts as a coordinator and other decision makers

who are viewed as followers assume different models of the same system.

Several classes of information structures available to the decision

makers will be discussed.

First, we consider an interconnection of M discrete-time linear

stochastic subsystems and associate with each subsystem a

decision-maker, a quadratic performance criterion, and a linear noisy
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measurement. Superimposed on the interconnection is an addition

decision maker called the coordinator acting through an additional

discrete-time linear stochastic subsysteir, with a separate quadratic

performance criterion and a separate linear noisy measurement. The

coordinator is viewed as a leader and the other decision-makers as

followers assuming Nash rationale or Pareto rationale among themselves.

p The Stackelberg equilibrium strategy (17] is extended to fit this

situation when there is one leader and many followers.

When all decision makers have perfect system measurement, or when

all the information of all the follower- are identical and the

coordinator's information contains the followers' information, feedback

control structure will be sought based on the stochastic Stackelberg

eauilibrtum strategy (18]. The folLowinp special cases will -aso be

examined: 1. when the coordinator has perfect measurement and all the

followers have indentical noisy measurement, and 2. when the

coordinator has noisv measurement and all the followers have no

measurement.

The classes of information structure ar, not too realistic but they

provide some insight into the more complex and realistic cases treated

subsequently. Satisfactory control of a high order system may oft-n be

achieved using reiatively few :neasur'ements and a controller, of

relatively low order. This has been the motivation for a number of

design procedures using output feedback or Ivna'mic controllers of a

specified order (31,32,38,511,6,3,61). A Ithough, te aSsumpt ion 0M



linearity in the class of instantaneous feedback control laws might lead

to results far from optimal which was pointed out by Witsenhausen (61]

and Basar [81, the practical need for simplifying approximations becomes

more acute in decentralized control when there are many separate

controllers. Decentralized Stackelberg strategies which are constrained

to be linear dynamic controllers of specified orders, will be

determined. This control policy has the obvious advantage of being

Jstructurally simpler to implement since it does not require memory of

past meausurements. However, there exist, at present, no stability

results for this algorithm.

Finally, decentralized Stackelberg strategies will be used to

develop a decentralized controller for a three-area electric power

system. This design procedure meets all the performance requirements of

load and frequency control, i.e. control law independent of

disturbance, zero steady-state offsets of frequency and tie-lie exchange

variations and optmal transient performance. The dynamic model,

developed by Elgerd and Fosha (25] and Calovic (191 will be used. To

overcome the problem of zero steady state offsets of frequency and

tie-lie exchange variations, the integral of each area control error

(ACE) is adjoined to the system equations. These new state variables

are included in the cost functional. So as Stackelberg decentralized

are concerned, each control area is constrained to feedback only its own

measurement and they have their own choice of cost functional. The area

which has superiority in computing his strategy/collecting information,

will be declared as a coordinator who coordinates the other areas which
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are viewed as followers. When the lower-level subsystems desire to

cooperate among themselves a Pa'eto ootimal solution will be chosen,

otherwise Nash equilibium solution will be chosen. The algorithm for

obtaining decentralized controllers is developed and applied to

load- fr'equency kontrol of interconnected power systems. The

computational algorithm suggested can not guarantee satisfactory

results. However, in practice the algorithm has exhibited rapid

convergenoe.

In Chapter' 2, three important strate 'ies in Games theory, i.e.

Nash equitlbrium, Pareto optimad and Stackelberg equilibrun are

discussed. The necessary conditions Cor the three strategies applied to

a linear quadratic Gausslan discrete gawe are reviewed.

Chapters 3 and 11 deal with Stackelbevg coordination. Centralized

and decent ralized inf'ormation struotuv'e are studied in this oontext.

Decentralized structure is more attraotive since the control sequences

are function of the :easur.ble output only. The general approach is to

designate one subsvstemn to be a coordinator or leader who ,ooditnats

the rest or the subsystems who are viewed as ftollowers. Among the

C I'olowers a Pareto optimal or Nash equilibrium solution is selected

according to their decisions to Cooperate or" not. These oonoepts along

with the solutions are derived.
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In Chapter' 5, the algorithm to solve the decentralized ;tochastic

Stackelberg coordination suggested in Section 3.4 is investigated

further. A three-area interconnected power system, which is a class of

large scale system, is selected as our example. The design procedure

emphasizes proportional-plus-integral feedback control. A simulation

study is presented.

ii:

11
11
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2. LINEAR QUADRATIC DIFFERENTIAL GAMES

In this chapter, some important aspects of' nonzero-sum games that

are pertinent to this work are :'eviewed. We will consider a special

class of' differential ganes, where the system is linear and the cost

functions are quadratic functions of the state vectors and controls,

which is probably the only non-trivial class or differential games in

which solutions based on any rationale can be obtained analytically

without difficulty.

In diferential g~imes, one must choose a solution concept such as,

Nash equillbrium, noninferior ity, Staekelberg equliltbrium etc.. Oine

must also specify what information is available to each pla\er during

the course of the game. Extensive work has been done on deterministic

nonze'o-sum difi'erent l games with particular emphasis giv on

two-person g mes of Linear quadratic f'orm [L3.,3o,,1- R C*NU 1 t s

- I available in the literatures indicate that the solutions of interest,

Nash equilibrium, Pareto equilibrium and Stackelherg equilbrium, fot

this class of games, and for different a pr'iori fixed strategv spaces,

is an affine policy for each Olavet, provided that cevtaln existevce

conditions are sat lz'ted. T. Sasar [$] has given a count erexampe to

show that a two-person nonzerc-sum game pro$lem admits a nonlinear Nash

solution. Hie has also shown that it is possible to obtala a r'obust

solut ion whic h is aloballv uniq1ue bv tnotLudin4 an additive :ero mean
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white noise in the state dynamics. To present the idea without loss of

conceptual generality a two-person stochastic nonzero-sum game with

perfect measurement is considered. Three types of strategies are

reviewed, the Nash equilibrium strategy, the Stackelberg eQuilibrium

strategy and the Pareto optimal strategy.

2.2 Problem Formulation

A general formulation of the two-person discrete-time linear

quadratic stochastic differential Same is given as follows:

x(k+1) = Ax(k) + Bu(k) + Cv(k) + w(k) (2.1)

11y'(k) = H1x(k) + 1(k) (2.2)

y y-(k) = H2x(k) + t)2(k) (2.3)

where x(k) is the n-dimensional state vector, u(k) is the m-dimensional

control vector of player 1, v(k) is the 1-dimensional control vector of

playeyr 2, y (k) is the pi-dimensional measured output vector for the

i-th player. The vector w(k), i'(k) and x(O) are independent Gaussian

random vectors for all k, where x(O) = N(O,X(O)); w(k) = N(O,(I)(k));

Wi(k) = N(O4 i(k)). Each player i chooses a control vector from a set

L of admissible control Ui to minimize the expected value of cost function

Sj, where

N-1
J'(x,u,v,k) : xT(N)Qi(N)x(N) + [xT(k)Qi(k)<(k)

k=o

+UT (k)Ri(k)u(k)+vT(k)Si(k)v(k)] i=1,2 (2.41)
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Because there are more than one cost functional in differential

games, optimality is defined in terms of the rationality assumed by the

players in computing their controls. The most commonly known rationale

are the Nash, Pareto and Stackelberg solutions which are reviewed in the

following section. These are discussed in detail in [35,36,47,53].

At each stage of the game, each player will have access to some

U information Ii about the present and/or past value of the state vector,

its own cost function as well as those of the other players, and control

11 strategies of the other players. Each player i has a control strategy

H= which is a mapping from the information set I to the control space Ui.

2.3 Nas Eauilibrium Strategy

The Nash equilibrium strategy which is secure against unilateral

deviations by any one player, depends on what information is available

i to the players during the course of play: for example, the

'closed-loop' and 'open-loop' assumptions lead to entrrely different

costs and controls. It is important to indicate that all the cost

4f function mappings are included in each information I . Furthermore, all

players' decisions are announced simultaneously. The Nash equilibrium

I' strategy is reasonable when cooperation or coalition can not be

guaranteed and the infcrmation structure is as stated above.

In this section, we review the necessary conditions for obtaining

Nash equilibrium strategies for discrete-time dynamic games (2.1) witzh

perfect information, i.e. yi(k) = x(k), via dynamic programminq.

I
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~I At stage k:

u (M< arg min E(xT(k)Q'(k)x(k) + uT(k)R (k)u(k)
u (k)

+ V *T(k'sl(k) v (k) + J *(k+l)/11 (k)) (2.5)

v *(k) =arg min E(xT(k)Q2(k)x(k) + u*T(k)R2(k)uI(k)
v(k)

+ VT(k)S2 (k)v(k) +. j2*(k+l)/, 2(k)1 (2.6)

When u*(k) and v*(k) satisfy (2.5) and (2.6) simnultaneously, a pair

(u*(k), v Mk) constitutes a Nash equilibrium solution. The Nash

optimal strategies for (2.1) are:

u~ (k) = -,(kWx(k) (2.7)

v (k) =-e ,2(k)x(k) (2.8)

where

(k) = (R1+K'B8P 1 KIA

K1  BTPI(k+l)(IC(S2+CTp2 (k+1)C)1ICTp2(k+l)I (2.9)

K2 =cTP2(k+1(I-BR+BTpl(+lB)-lBTpl(kc+1)I (2.10)I The optimal Post-to-; o are

JI*(k M =xT(k)Pl(k)x(k) + 1,,(k) (2.11)

J2*(k) =xTkp2 kxk + -2(k (2.12)

where

(k 1 + TR1614n + 2 Sl

+ (AB!_2T!kj(-JC 2 (2.13)

P(N) Q(N

-Ir(k) ir1'(k+l) + tr(rI(k)Pl(k+i)); -, (iN)=0 (2.l14)

P2 (k) Q2 + JTR2 j+,! 2 TS2~2

+ (AB_,j)p(kI(-6-2 (2.15)
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P2 (N) = Q2 (N)

T2(k) 2 (k+l) + tr{(Vk)p2 (k+1); 7-2 (N)=0 (2.16)

These equation can be solve backwards in time using the given final

conditions. Sufficient conditions for the existence of the solution

given by T. Basar (10), is that (RI+KIB] and [S2+K2C) are non singular.

2.4 Pat Optimal Stratezy

If it is possible for all players in a differential game to agree,

prior to the starting time, to coordinate their strategies, then the

resulting set of control should be chosen from the Pareto set of

solutions. No other feasible choice of controls could decrease the

costs incurred by one or more players without increasing the costs

incurred by the others. The selection of a particular solution in the

Pareto set is generally made subjectively based upon negotiation among

the players. Finding the Pareto set for a differential game is

equivalent to solving an optimal control problem with a vector cost

function. When appropriate convexity conditions are satisfied [47,48]

the problem is equivalent to solving an N-I parameter family of optimal

control problems with scalar cost criteria
I

2J = Ce-  J i

i=

2 N-I

= i (cxT(N)i(N)x(,N)+7xT(k)Oi(k)x(k)

+uT(k)Ri(k)u(k)+vT(k)Si(k)v(k)] (2.17)

2
a i> 0, > ai= I
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The components of a are interpreted as the relative weights placed

on the interests of the players entering the agreement. For any given

weighting vector ( , the Pareto optimal solution is found by solving a

linear, quadratic optimal control problem. The controls corresponding to

this solution are:

U (a) -(R+DTP(k+I)D]-IDTp(k+I)Ax(k) (2.18)

where

D ] ;[ ( ]

2 2
'i: o l ;  R 1i R

2

i=1

P(k) = Q + KTRK + (A-DK)Tp(k+I)(A-DK) (2.19)

P(N) = Q(N)

A sufficient condition for the solution to be exist is that the matrix

to be inverted is positive definite. These equations can be solved

backwards in time using siven final conditions.

The cost-to-go incurred when the players use arbitrary linear

feedback control of the form

ui(k) = Kix(k) i:1,2 (2.20)

Ji(k) = XT(k)pi(k)x(k) + -ri(k) (2.21)

I x



where

Pi(k) =Q' + KiT Ri&

+ (A+BK l+CK2)TPi(k-lA)(A+BKl+CK2) (,2.22)

Pi(N) = Q'-(N)

nT (k) = -r(k+1) -' trPi'k+1)(k); r()O(2.23)

2.5 fa ckelbr Eguilibrium Statg

In this section we consider two-person games, where one player is

-alled the leader, and the other is called the follower. In the

Stackelberg solution concepts there is a difference in information

between two players. The leader, who acts fi.rs t, krlnows the cost

function mapping of tChe follower but the follower may or, may not know

thecos fucton a~pngof the leader'. However', the foll.ower, who

acts second, knows the value otf the first Player's decisions and take

this into account in computing his strategy. Within the dynamic game

context, three types of solution concepts are i..mportant in Stackelberg

games: open-loop, closed-loop and equilibrium Solutions. In this

thesis we consider only the Stackelberg equilibriuM- straitegy which

satisfies the principle of optimality. For a discrete time system (2.1)

with perfect information, uOk) represents the lecision of the le-1ader,

v(k) the decision of the follower. Using dynamic programming at sta!;e

v,(u,k) arg min EfxT(t.)Q2 (k)%-(k) + u_'(k)!R2 Mku(k)

v(k)

+ vk)(kvk)J (k4.i)/I2(k)) k. 2



u () arg min E(xT(k)Q1 (k)x(kc) UT(,<)R1 (kOuc)

u ) + v ~) 1 kv(k)+J to((+1) / 1 (10) (2.25)

V (U,k() IS the follIOWC.11S 0optimot VOICtiOtn to a decision u(kc) by the

leader. The optimal strategies are:

u0(k) = -W 1 (k )Y (kc)xc) (2.26)

v 0 (u,kc) -6(kc)(Ax(k)+Bu(k)) (2.27)

where

WOOk) R 1+BrSIB+B(tC)lk+(X A)

VIC) =rA LA +

L(k) =Q +AAA fC)~+)iC)

ri~ ~ti:naL cost to Fo aro

Where

K ()Q(N)

(k) (k+0) + 'kK(k1 (.)

1(N) 0

Y~ WT, 1 I Y .2 . 12)

K (N) Q-N

ir 2(N) =2I+ ) .tLI(c)(~. .3
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3 STACKELBERG COORDINATION

WITH NASH RATIONALE AMONG LOWER-LEVEL SUBSYSTEMS

3.1 Introduction

In this chapter we investigate a sequential decision approach to

the control of an interconnection of several subsystems. Associated

§ with each subsystem is a decision maker or' a performance criterion

function or cost function. A framework for studying strategies for, the

I. control of such systems is non-zero N-person diff'erential games

[ [35,36,117, 18]. Various solution concepts for defining optimality have

been proposed and examined. One of the most widely studied solution

1 concepts is the Cournot or Nash strategy [117, 48] whereby the

decision-makers simultaneously minimize their respective cost functions

with respect to their individual controls. At equilibrium when all the

decision-makers apply their Nash strategies, the cost function of any

subsystem is at minimum with resoect to the control for that subsystem.

A sequential decision solution concept was first studied by

HI Stackelberg (58] in the context of a static economic problem with two

decision-makers. In (16,51,52] the Stackelberg concept was develooed

! for two-person dynamic games with perfect information. Three types of

Stackelberg strategies were investigated in [16,51,52]: open-loop,

closed-loop, and feedback. In general, the open-loop and ilosed-loop

Stackelberg strategies do not satisfy the urinciple of optimalttv but

the feedback strategy and the more 4eneran eouilibrium ztrae,y t 17] ar ,

L
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defined to satisfy the principle of optimality. Open-loop Stackelberg

strategies were considered in (53] for two groups of players where the

player in each group use Nash strategies with respect to each other but

each group plays according to the open-loop Strackelberg concept with

respect to other groups. All these strategies are for deterministic

dynamic games. In [18) the feedback Stackelberg solution concept is

extended to stochastic two-person dynamic fames.

The approach to be explicitly developed in this chapter is based on

the coordination solution concept suggested in (15] for deterministic

systems. We allow stochastic disturbances in the dynamic process model

and in the measurement model, as in (183], but several second-level

decision makers or followers are presented as in (15). Several types of

information structure are considered. Explicit recursion formulas for

tile design of the feedback Stackelberg controllers for the coordinator

-and the foloev~ are resentd The staege are adative to c-hoge's

in information available at each stage and they satisfy, the principle of

optimality. The strategies of the second level decision-makers are

equilibrium Nash strategies with respect to each other and in addition,

they take into account the known strategy of tle coordinator. The

coordinator chooses his str~tegv with the full anticipation that the

other decision makers will take the coordinator strategy into account in

mimizing their individual Cost funtions.
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1! 3.2 .EroJbipj Formulation

( {Consider M discrete-time linear subsystems, each modeled by

xi(k + 1) = AiO(k)xo(k) + Aikxi(k)

+ L AiJ(k)XJ(k) + Bt(k)ui(k) + O'(k) (3.1)

i:j

The measurement of each subsystem is given by

11 zi(k) H'(k)x°(k) + Hiikxi(k)

M+E HiJ(k) xJ(k)+ i(k) iI..,;(3.2)

j=1

where xi is the ni-dimensional state vector of the i-th subsystem, ui js

Hf the mi-dimensional local control vector of the decision maker DMi for

the i-th subsystem, zi is the li-dimensional measured output vector for

the i-th subsystem. The vector x-(O); 0.())ERni; (k)Rli; i=1,....M;

are mutually indeoendent Gaussian random vactors for all k with known

means and covariences.

E(xi(o)) = 0 ; Covfx1 (O)I = z'(0)

[E i(k)} = 0 ; Cov(oi(k) = ()'(k)

tE{ Ik) = 0 ; Cov{6 (k)) = =-k

Each subsystem seeks to minimize the expected value of its cost function

j'(ui) _ xiT(N)Qoi(N)x'(U)

k=o( M= (3.3)
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In addition to the M-subsystems, we assume that we have a

coordinator subsystem modeled by

M

x°(k+l) = AO(k)xO(k) + T Aoi(k)xl(k) + 0°(k) (3.4)
iz1

and the measurement of the coordinator subsystem is given by

z°(k) H°(k)x°(k) + Hoi(k)xi(k) + p°(k) (3.5)

where x°  is the n°-dimensional state vector of the coordinator

subsystem, u°  is an m°-dimensional control vector chosen by the

coordinator DM° , zo is the l°-dimensional measured output vector of the

coordinateor subsystem. (x°(O); O(k)OERn°; co(k)GRlo; k:O..,N-1}

are mutually independent with the random vector of each subsystem.

E~x°(O) = ; Cov(x°(O)) =20(o)

({9°(k) = ; Covio°(k)} = 00 (k)

EU0°(k)} = 0 ; Cov( °(k)) =-°(k)

The coordinator chooses u to minimize the expected value of the cost

function

~M

jo(uo) = !xoT(NQo(Nxo~N) + i~j
i1l

N-I

i=1

where Qo, Qoi, Re are all positive definite.
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The Stackelberg approach C 15] to the coordination of the subsystems is

to consider DM° as a leader and DMi as followers, We imagine that DM°

provides DM' exact knowledge of all decisions made by the coordinator

and each DMi minimizes Ji with respect to u i for each given decision of

DM° assuming that the other subsystems will do the same. With this

assumption, the subsystems play Nash among themselves. The coordinator

then minimizes Jo with respect to u 0 , considering that the decision from

the subsystems result from choices of ui which minimize ji for

i=1,... ,M. Additionally, the information sets include exact knowledge

of the system dynamic DM° , DMi I th measurements and the cost

functionals. The statistics of the random elements for all k are also

[ included.

[ The optimal feedback Stackelberg approach to the 2-level

coordination of the subsystems (15] is described by the following
procedure: At each stage. the coordinator computes the subsystems'

expected reaction to his decision, based on miniM.izinz the subsystems'

L[ expected cost-to-go assuming that all second level decision makers will

[ use their optimal feedback Stackelberz strategies in the fuIture. The

coordinator then seeks to minimize his expected cost-to-go assuming that

[ the subsystems will respond -s expected. Each subsystem then uses the

coordinator's decision to compute his optinal deoision, assuming that

I other subsyztems will do the same. These expeotations are ceonditioned

f [ on the information sets available to eich subsystem.
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The information set consists of exact. knowledge of the system

dynamics, the measurement rules and the cost functionals of all decision

makers. Additionally, it includes exact knowledge of all decisions made

by each player up to stage k-I and the statistics of random elements

0i(k), fi(k), i=O,...,M for all k. Also the Stackelberg nature of the

game implies that the followers' information contains the exact value of

the leader's decision at time k, u°(k).

Let ar min f(k) denote the value of u at which f(k) achieves its

absolute minimum. Then the equations that define these ootimal

solutions are as follows:

ui(u°,k) :arg min E(ji(ui Pxi,k)/zi(o)} (3.7)
r Ui

uO (k) : arg min EtJ°(u°,x ,x ,k)/z°(k)} (3.8)

ui*(k) = u!(u°XKk) (3.9)

The optimal cost-to-go at each stage are

Ji (k) : E(Ji(u i , × -! , k ) / , i ( k ) ,u i  u i  u -u } i: , . , ( . )

Jog(k) = E(JO(uO,xO,xi,k)/z°(k) ,u°=u°*,uiu i * }

Stochastic dynamic programming can be used to obtain the solutions.

Two possible cases will be considered in this chapter. First, when

the information is centralized, several classes of information

structures are discussed. One is when all decision makers have Derftct

system state measurement. Another is when the information of alt the

followers are identical and rhe coordinator's information contains the
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followers' information. Second, we will constrain each controller, to be

in decentralized structure and the i-th subsystem including the

coordinator, knows only its own measurement.

3.3 Coordination with Centralized Informtion

In general, the coordinator has some information from each

subsystem and, in turn makes some decisions that will influence the

dynamic response of the lower-level subsystems. By definition of

Stackelberg strategies [521, all decisions made by the coordinator are

known to the second level decision makers. However, some information

may or may not be available to the coordinator and lower-Level

subsystems. When the information sets are centralized, either the

coordinator and the lower-level subsystems have perfect information of

state, or the lower-level subsystems have the same measurement but the

information set of the coordinator consists of his own measurement and

the lower level subsystems' measurement. Several partiotIlar t?.se* of

this problem are examined. Let us examine a system with one coordinator

and two second level decision makers.

Consider the augmented system

x(k+1) = A(k)x(k) + B°(k)u°(k)

+ B (k)u1 (k) + B2(k)u2 (k) + v(k) (3.12)

where xT (k) = [xoT(k) xlr(k) x2T(k)]

vT(k) =[oT(k) 01T(k) 0
2 T(k)]

x(O) and v(k) are Gaussian random vectors with zero mean and covariance
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'(0) and A(k), and the measurement of each subsystem is

zi(k) = Hi(k)x(k) + i(k) i=0,1,2 (3,13)

The quadratic cost is
ji(ui) xT(N)Qi(N)x(N)

N-I
+ 1 [XT(k)Q'(k)x(k) + u ik)Rikuik)

k:O
i=0,1,2 (3.14)

3.3.1 Perfect Information

Suppose all subsystems have perfect information of the states,

i.e., zi(k)=x(k), i=0,1,2. Assume that the expected cost-to-go

at stage k is

Vi(k) = IxT(k)Si(k)x(k) + Yi(k), i=0,1,2 (3.15)

for some deterministic matrix Si(k) and scalar function Yi(k).

Using dynamic programming as shown in Appendix 1, the optimum strategies

are

u° (k) = -L°(k)x(k) (3.1 )

ul(k) = -&(k)[A(k)x(k) + B°(k)u°(k)], i=1,2 (3.17)

where

L°(0) = [R°(k) + 'T(k)SO(k+01(k)-B T(k)S(k+1))(k)

C:(k) = (I - Li(k)Bj(k)EJ(k)Bi(k)]-1(Li(k)-Li(k)Bj(k)LJ(k))

i=112, j=1,2, irj

AM = A(k) - Bl(k),J(k)A(k) - B2 (k)A 2 (k)A(k)

B(k) = BO(k) - B1 (k)A1(k)BO(k) - B2 (k)2 (k)Bo(k)

Li(k) = [Ri(k) + BiT(k)Si(k+i)Bi(k)]-IBiT(k)Si(k+1)



Assullig tlt he indioit ed invo'sezi oi't ,f tt' th tht uadnt it' Are

)~l si (N1

l ikk) vikk+l) + tvs 1) .VO ~j12 S2f

cmp0 1,2k

ii C~cmite 0 k 1 .

cou pu t k, i=],2

th. - and~ '4o to: Stopw uk2 I t ell

inole pol"Ceo nal ovn t 'N( th



29

Illustrative Examole

Consider a linear system described by the difference equation:

xl(k+l) = 0.75x1 (k) + 0.9x 2 (k) + 0.9x 3 (k) + u1(k) + w1(k)

x2 (k+1) = 0.3x,(k) + 0.8x 2 (k) + 0.2x 3 (k) + u2(k) + w2(k)

I x3 (k+1) = 0.3x 1 (k) + 0.2x2 (k) + 0.8x 3 (k) + u3 (k) + w3(k)

where uj are the controls of players i; i=1,2,3 respectively. {wi(k);

i=1,2,3) are mutually independent Gaussian random vectors with zero

f means and known covariances. Let the cost functions be of ,he form:

N-IJ i = (xi(I)_pi)2 + 7Cxk)..2+ uR(k)] i=1,3

where pi; i=1,2,3 and yi; i=1,2,3 are constants. This problem is

similar to a tracking problem where the players are trying to force the

[ states to be as close as possible to some prespecified values while

investing a minimal amount of energy.

[1 Assume that player I is the coordinator or leade- and players 2 and

* 3 are followers. Every players will seek control policies which are

functions of states. Stackelberg coordination for a6 interconnected

[ system with player 1 as the coordinator and players 2 and 3 as

followers, who assume Nash rationale between themselves is sought. The

parameters in the cost functional have the following values: pi = 0;

- i:1,2,3 and yi = 0; i=1,2,3 and N = 10. Fig 3.1 shows the trajectorv

and control policies of the system.
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3.3.2 Coordination with Nested information Structure

I. Incomplete Information for Coordinator and Subsystem

Consider the case where the information of the state is incomplete.

At each stage, in addition to their own estimates, the optimal

strategies would include terms involving an estimate of the other

subsystems' estimates of the state in the future. This leads to

estimators of much larger dimiension than the system itself. For a

special case of the stochastic problem, consider the case wnere each

subsystem has the same measurement

z1(k) = z2 (k) = z(k) = H(k)x(k) + i(k)

and the coordinator knows both his measurement and all Subs stem

measurements. So for any k, z°(k) D z(k), imolying that the information

set: ire nested. We also have to assume that there is no information

transfer among subsystems rhrough their controls [18). The oprimum

strategies for this case are derived in Aopendix 2 as

ui(k) =-i(k)(A(k)(k) + S°(k)u°(k)) i=1,2 (3.26)

u° (k) : -°(k)Y(k)'x°(k) - ((1)H(k)(1(k)-'0 (k)] (3.27)

jO*(k) 1 1(k)_O(k) [S(k) sC [ 1 (k)o(k

1 S(k)[O~) + IO(k)

(3.23)

i (k) : .xT(k)S-(k)(k) + 1 v'(k) i=1,2 (3.29)

where .X(k) Efx(k)/z(k)}, .°(k) E{ Ok ) /z°(k)}

A-(k) '.(k), 2(k) and L (k) are defined in the cerfect Information ,ase

with SA reolacinz Sok(.) in addition we have

sA(k) +QO(k)

- yT(k)&(k)v,. (3.0)
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k + trl +)(k((k+) =_(kl)]K T(k+l)

Str~rP'kik) - P(k'k)](N(k)-Y(k)) T ()

1 . T)) (3.35)

The recursive e'iations (3.30) and (3.311) are identioal to equations

(3.18) ana (3.22) in the perfect information case, with the same initial

Iconditions, so that the solution SA(k) and S1 (k) in (3.30) and (3.34)

ire mual to SO(k) and S3(k) in (3.8) and (3.22). Thus, as ar as the

Collowers are conce'ned, they play a "separation principle" strategy

which consists of the oti:naIl deterministic Ceedback law 'Of their best

estimate of the state. The leader strategy includes his own estimate

and a term involvinF a difL'erence in estimates. When both estimates are

the same, the leader also plays as in the "separation prineiPle".

2. Perfect £nforation for Coordinator

Consider the problem in whiCh the ccordi:nator has perfect state

measurement while the lower level subsvstems have available only nc Sy

output measurements. in addition, we assume that conditions are such

that the coordinator can deduce exactly the Lower LeveL subsstem:s'

state est imators, and the 1,ower Level subsystems ove the ,s 3me netsv

measurem:ent, L.e., z-I(k) = z 2('K : z (k ).

q,Whn %he coordinator has ,or",let tat ............. . .

exact .v the state of the lower ,.2vel sutsvztZ:fs' state est .a -' 
'.

,, 0 ')-t and (z(k):C. also :°(k) zkJ&. . of-r~o~ei ' , "st.
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information" type except the coordinator, does not have to estimate its

own state

The control law of the coordinator is

uO*(k) = -°(k)Y(k)×(k) - 2(k-)M(k)CM(k )-x(k)) (3.36)

and the control laws of the lower level subsystems are

u'(k) =-(k)(A(k)(k) + B(k)u°(k)l i=1,2 (3.37)

where E~x(k)/z(k)=X(k), The optimum cost-to-go is

1~Ak 0Rk1 1A()+ ok
lxIk k4 (k)SOk) (k)<O

I Ji(k) -T[T(k)S k)]2(,) + JL(k)t= , (3.39)

Ii[ where all matrices are the saine as in Section 3.2.1.

3No Measurements for Subsystems

[ Consider the problem ir w hicn the coordinator has a noisy

measurement, while the lower level subsystems have no measurement

available to them and are restricted to uzirg only a priori in 'ormation.

[ When the lower Level 3ubsystems have no measurements, t.e., Hi 1);O

(null matrix) and zi(k);zi(O) for a-1 k, the oroblem is also of nested

inf'ormation type. The control aw .C the oordinator is

I u =(k) -2°(k)Y(k) °(k) - , ()(3.40)

and the contro Laws of the lower level subsvstems is

ur tk) -Ait.)Atk). x(k) + u'uk :1,2 3.4

pcI .- '0 , ... , - --were Z ~x . z' ;)] : O '. ,£ ,,( ,, ':(,) : c) .
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The optimum cost-to-go is

jO*(k) -(k)(°(k] [s (k ) s k] xk]°( -o

S)(3.42)

i* (k) = !^T(k)Si(k)-X(k) + '-/'(k) i=I,2 (343)

where all matrices are the same as in Section 3.2.1.

Substituticn of (3.40) and (3.41) into the system equation gives

x(k+1) A(k)x(k) - (B1(k)A1(k)A(k) - B2(k) 2(kA(k)A k)

- (B°(k) - Bl(khk I(k)B°(k) - B2 (k)a2 (k)Bo(k))A°(k)Y(k)'^(k)

- (30(k) - B (k)la(k)B°(k) - B2 (k)A2 (k)Bo(k))AO(k)Y(k)

('(k)-2X(k)) (3.44)

It follows that the optimal estimate of the states by the lower

level subsystems, Sgiven only a priori information, i.e., no output

measurement, is given by

X(k+1) = [.A(M-81(NM1(kA(k)-B2(k' (k) A(k)

-(((k)-B I(k)3JL ( k) ) ( k ) Y k ]x(k5)

with initial condition ^X(0/0):.x(0).

in addition, when 7(O):O, then x(k/k)=O so that

u° (k) = -2°(k)[Y(k) - M(k)]X °(k) (3.46)

and uo(k) = - 4(k)B°(k)u°(k), ii,2 (3.117)

3.4 Constrained Decentralized Structure

It may be desirable to have a control policy that is simpler to

I implement than the optimal policy. Satisfactory concrol of a high-order

linear system may often be achieved using relatively fewer systern-I
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measurements and a controller of low order. This has been the

motivation for a number of optimal designs, using output feedback or

dynamic controllers of a specified order. For recent work in this field

we refer the reader to (31,32,34,37,38,5143.

3.4.1 Decentralized Control with Instantaneous Output Feedback

Consider the stochastic problem where a restriction is placed on

the control of the i-th subsystem and the coordinator at any instant to

be a linear transformation of the measurement at that instant. Also,

there is no information transfer among subsystems through their

controls. This simplifies the problem since a filter is no longer used

to estimate the state. Then

ui(k) = Fi(k)zi(k), i=0,1,2, k=O,1,...,N-1 (3.48)

where Fi(k) is to be determined to minimize the expected value of

ji(ui).

Consider the augmented system (3.12) and the measurement

zi(k) =Hi(k)xtk) l(k), i=0,1,2 (3.49)

Then

ui(k) = Fi(k)Hi(k)x(k) + Fi*-k) i-(k), , i=,0,1,2 (3.50)

and

2
x(k+1) (A(k) + TBi(k)F(k)Hi(k))x(k)

i=o
2

+ 7 Bi(k)Fi(k)i(k) + vk  (3.5)
i. =
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Define P(k) = E~x(k)xT(k)} and note that x(k) depends on (k) for

i=0,1,...k-1 only, implying that E(x(k)vT(k)}=O. Then the recursive

Jequation for P(k) is
2 2.

1P(k+1) = [A(k)+Z B(K)F(k)H(k)]P(k)[A(k)+ Bi(k)Fi(k)Hi(k)]T
"i:O i~o

2
+ L Bi(k)Fi(k)-i(K)FiT(k)BiT(k)+A(k) (3.52)

L i=o

Lemma 3.I if the linear system described by (3.12) is controlled using a

linear control policy (3.48), i=1,2 then the expected cost (3.14) i=1,2

can be expressed as

IE(j(k)] E(xT(k)Si(k)x(k)] + 1)

l:k .1
~N

+ trFiT(-
1=k+1

2w + t rF JT ( ! - ) B jT (I- I )S i ( 1 )B j (1-1) F j ( !- I )2 -= I )

J=o
4i i=,2 (3.53)

where Si(k) = Qi(k)+HiT(k)eiT(k)Ri(k)Fit(k)Hi(k)

2. 2+[A(k)+ EBJ(K)FJ(k)HJ(k)]s(k+l)[A(k)+5-BJ(k)FJ(k)HJ(k)]

j~o j~o

i:1,2 (3.54)
Ssi (N) = Q i(N4) (3.55)

IProof The proof is by induction.

'Consider the augmented system (3.12) and the cost criterion (3.1u).

The assumption obviously holds for FN. For any k

]



1= k

I EJ'(k+1 )j

'=1 ,2 (3.56)

with k~k+1 using (3.53) in (3.56) and after some altebra the assumption

holds for k~k+1. Thus (3.53) holds for 0,..,. The necessary

condition for a minimum at each step is that the derivative of the

I remaining cost with respect to Fi(k); i=1,2 must equal zero.

F (k -(R +B2*22TS2 (k+l)S 2 f l82TS2 (,.+1)(A+Bolzo(k)HO+2 IFl(k),Hl]

10 (),11T(HP (k HIO+=2(3.58)

or

F- Wk = "(kYA(k)+Bo(k)FO'-)Ho'k)]T 2 (k-) (3,60)

wher'e

I MXl(k)

Le~lml a TO2 a lnear svsrcem les.ribed by \3.*,2) is ntu.~ stn a

linear ontv'ol oi . 8) Cot, i=0 tten the exnectedi -",3.~) 'r

i:() is exoressed as



EEJ0 (k)] -jc(.XT( )o kxk 1 24 N SUMilj j~k+l

+ trFoT(i_1)IRO(t-1)+BoT(t_1 )So(i)go(i_1)]i'0 (i-i )E0(i- )

I j= 1(3.61)

w e e S O Nk ) Q0 (k) + j oT(k)Fo k) o(k) o k -)H~o(k)

+ [A(k)+B0(kF 0(k)H 0(k)+ B(k)Fi(k)Hi(K)'iS (k+1)
j=1

rA(k) +80 (1,) F0 (k) Ho (k) + B (K) F- (k) H'(k)] (3.62)

} S0(N = Q0(N (3.63)

At each scep t'he necessary condition for a min-imum Is th at ' thne

derivative of thI-e remnaining cost witlh respect to each elem ent of' F0(k)

m1aust eaualzeo

'0(k) ' '0 ( ok ).+Bk 1 'I" (k) ---o( i ) +5 ' 1-) 1 ") ) TS(k)

I (BO(k)+BI(k)l (k)B;O(k)+9 2(.)1, 2 (k)Bo,,k) )V1

I(ok+ I 1 I"(cS~)+? :)2(k)(: (k) 3~+
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I

+(-(k)+HI(k)Tl (k) 1 (k)T I T(k I (k)

+H°(k)T2(k.)E2(k)T2T(k)H°T(k))]-  (3.6U)

I" Theorem 3...j. The sequences ({"(k)} i:0,1,2; k:0,1,...,N-I of the i-th

subsysem that minimizes E(Jt(u)} i:0,1,2 subject to the constraint

(3.48) are given by the equations (3.59), (3.60) and (3.64) where it is

)assumed that the required inversed exist and

2 2
1. P(k+1) = CA6)+ - Bi(k)Fi(k)Hi(k)]P(k)(A+T' Bi()Hi(.)Li(k)] T

F1=0 1=02

'7 BI(k)Fi(k)=_ )FT (3.65)
1=0

P(O) is given.

2. Si=k) Qi(k)'.HiT(k)FiT(k)Ri(k)F!(k)Hi(k)

2 2
[Ak '7. Bi )i )i(-) ]Tsi(lc+ )(A (k) B- '._  i'k k-, , H,4 ]

+:1.2 (3.66)

S 0siN) : Qi(N) i-I,2 (3.6f)

3. S°(k) Q O(k) + H°T(k)FT(k)R°()Fo(k)'o(k)

2
4[ CA(k)+Bk(k (k)H(k) -i)i( , L.

2
Ci A(k)+BO(k)F~ io(k)+ i('' <Wi k ,.,,. (36$F."0HON S (le), F . k k) (3.68)

gj.=
Ii SO(N): Q°(,l) {.

The sequence (F'k)}, i:0 ,2; k:O=' ... N-I the o r"da r

and the t-rh subsystem are the solution t, 'he dsrete two- "int

boundary value oroole n. Note that 3.65), k3.66) and x3.67 ) are

recursive relationships for generating k) and 5'k), 21C, , Ceet'1
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(3.65) which is a forward equation and (3.66) and (3.67) which are

backward equations, and all depend on the sequence or (Sik))

and (P(k)} are known no simple calculation will solve the problem. We

suggest the following simple procedure to solve the equations:

1. Make an initial guess for the gain {F°(k)} and (Fi(k)} i=1,2;

k=O,1,...,N-1. Let 4=0.

2. Use F ?(k)} and {F'(k)} to solve (3.65) forward in time to determine

(P.(k)} with P.(0)= I(O).

3. Use [F ,(k)} and (F+(k)} to solve (3.66) and (3.68) backward in time

to determine [S(k)}, i=1,2 and [S?(k)} with s()=01(), i=0,1,2

4. Use (P.(k)1 and (S?(k)} in (3.64) to determine (7j+ (k)}.

5. Use (Pj(k)}, (Si(k)), i=1,2 and (F0 (k)) in k3.59) and (3.60) to3

determine [Fj+ (k)}, i=1,2. Let j=j+1.

6. Repeat (2)-(5) until the desired degree of convergence is reached.

So far no convergence conditions for this algorithm have been

found, but as with most algorithms of this type it is expected that

convergence depends on the initial guess.

3.4.2 Decentralized control with dynamic output feedback

Consider the stochastic problem where a dynamic controller of a

specified order for the i-th subsystem and the coordinator described by

wi(k-1) Di(k)wi(k)+Mi(k)zi(k) i=0,i,2 (3.70)

where w-. is the state vector of the controllers used, then

U](k) -Ww" (11 '(O)zi 1,2 (3.71)

C1]
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also

9(k) Hi(k)x(k)+ (k) i=O,1,2 (3.72)

For a given integer si (Osi <n) find matrices Ni(k), Fi(k), D1 (k) and

Mi(k) such chat the corresponding expected cost EfJi(ui)) will be

minimum. Note that if si= 0 the controller is reduced to

ui(k) = Fi(k)zi(k) i=0,1,2

and if s = n, an optimal solution is obtained. The cost functional to

be consider is the same as in Section 3.4.1.

Consider the augmented state vector

-ET(k) xT(k) woT(k) wiT(k) w2 T(k ]

then

2

(Z(k)L (k 2OO1=0

i:o
2

Ii ~~where L) = (

+ Li B k'-k)I 3

i==

and

ui(k) : F~ -)()T()W~ i=,1- 3.7

where T : > rIO0

n si

eato

Le, k): -(k) T"] and . +he .'k funcioa ok -i=0,, cordnatr i
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k~o

Al~so, the cost C'unctional o If the lower-level subsystemn is

The augmented system (3..73) and controller (3.74) are of the same 'or C

- as (3.51) and (3.49). Also the cost functionals are the same. The

following theorem can be derived using -he sat e argument as T heore, m 3.1.

T'heorem A The sequences { (k)} i:O, ,2; k=O,,...,'-1 of tne

coordinator and thei-th suosystem that minimize EouI) =o, 1,2

subject to The constraint \3.WJ) are given by

SATET

AT= JH

F ' ,,) : '- [. (<T ( <.(.k<' < i = ,2 ,3.78 ?

where

i,' : '4 k B . B S , - , ) _: ,

Vi 
-

it is assumed tnat the recuired .n'erse exst an"' md
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1. : 2 .2

2
1 ?(kli (A+ -B- IEV-I(k)[ T +. 7(  (3.79iJ i=O

~i=0

P(O) is given.
' I 2. -§i(k) r Q+ iTTk)(k) k)~lNHi

2 . 2
( .A+ZLBIF-(K)H T(k+1)(A+L (k)RI]  (3.80)

i=o i:o

J s&(N) : +i( )

3. (k) o + T(k) + £.+qoIo(k)To+T~i~i*()

~2
s S(k+1 ) (A+B°° M(k) ,°+. 3i (k)i] (3.81)

Again the sequence -ik)} i=0,1.2; k:O,,... ,4-1 of the coordinator

and the i-th subsystem are the solution to the discrete tvo-point

boundary value problem as the previous one but are more complicated to

solve.

in the case where either the coordinator has noise in 1-ts

measurement or the lower-level subs, stems have no noise in their

measurement, and want to use output feedback, they zan do so by reducin$

J the dimension of' their controller to zero.

I
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3.5 Cone 1.1--i

The control of an interconnected set of linear discrete time

stochastic systems has been considered. The organizationa form of the

system permits one decision maker to be the coordinator or leader and

the decision makers for the other subsystems are all followers with

respect to the coordinator, but they use the Nash strategy with respect

to other second level decision makers. Both centralized a d

decentralized control structure were considered. As in single decision

maker control oroblems wi h output feedback constraints,

decentralzation constraints Senerally lead to two-point boundary value

problems. Explicit recursive formulas for these two-point boundary

value problems have been derived. The sequential decision aoproach

seems to be a natural one when the cost func:ion associated with one

decision maker has a more global significance compared to the others.

S-his decision maker takes the role of a coordinator and leader.

Io
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minimizes J with respect to u t for eaoh kjiven decisLon of DM, assuming

I that all the followers agree on an cooperation. With this assumption

the subsystems use Pareto optimal strategies among themseLves. The
coordinator then minimizes Jo with respect to uO, considerins that the

ti decisions from the subsystems result from choices of u[ which minimize

ii for i:1....,M. Additionally, the information sets include exact

1. knowledge of the system dynamic DMO, DN1, the maasurements and tho cost

U functionals. The statistics of* the random elements Cot, all k are also

included. Cnsider the augmented system

[ x(k+) = Ax(k) + Su(k) + Bu(k) + v(k)

[, where,
L xT(I) = ( xT(k) x T (k) j2T(r )

f[ -, vT(k) = () 01T(k ) 2 T (k) ]

uT (k) uIT(k) u2Tk)

Ii x(O) and v(k) are Gaussian random vectors with zero means and covariance

Z(O) and ,\(k). The measurement equatLon of each subsystem ts given by
U, zi W =: Hi(k)x(k) + 41( izO'Ia (4-2)

{The quadratic cost of the lower-level subsystems becomes

2

J(u) :'.ij 1 (u); x O; , 1 (4.3)

N--I4Also, the zud~ ost of the orvitnator becomies

I,<.
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The equations that define the optimal solutions are as follows:

uo(u°,k) = arg min E{J(u,x,k)/z(k)}
u

u O*(k) = arg min E{J°(u°,x,k)/z°(k))
u
o

t = uo(u0 *kSu"(k) 0 U(°,k)

The optimal cost-to-go at each stage are

J*(k) = E(J(u,x,k)/z(k),u = u ,u
0 = U0 }

ft JO*(k) = E{J°(ux,'k)/zO(k),u° = u°0 'u = u

Centralized and decentralized structure of information are investigated

[in the following section.

U. 3  Coordin'tion wth1. Cgntratied nformation

I. In this section, two cases of centralized information is

I considered, perfect information and nested information. Recursive

equations for the design of feedback controllers for the coordination

and the followers are obtained. For simplicity, a system with one

coordinator and two second-level decision makers is examined.

4.3.1 Perfect Information

Suppose all subsystems have perfect information of the state i.e.

II z()=x(k). Assume that the expected cost-to-go of the lower Level at

[ stage k is

V(k) = .x-',)S(k)x(k) - 13(k) (U.6)
for some 4eterministic matrix S(k) and function (k). Also the expected

cost-to-go of the coordinator at stage k is:
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VOWk ~Jk)Sok1)xk + -1130(k) (4.7)

for some deterministic matrix SOWk and "unction /30 (k). The optimal

strategies are derived using dynamic programminG:

u (k) = ,A(k)BT(k)S(k+I.)EA(k)x(k) + B0(k)u0 (k)] (4.9)

where

A c(k) =(R(k) + S~)~+)~)_

2()=(R'o(k) + 3k)o-19(]'

A(k) = A1(-k)() kSk0 k]

Assume all the required inverse matrices exist and

=otx Q0(N) (4.11)

e (k) =p60 "C+0 + trS0 (I,+1.\(Ik) (4.12)

Po)=0 (4.13)

S(k+1)(_A(k)-%)AO(k S ) So(,<+I.\)-XW (4.14)

SOX1) = 'Q(X) (.5

3k)= j3(k+1 + trS(k,+*0.\(k) )

'1300 0 (117

These equations can be solved backwards in time with11 the given final,

conditions. nne condition fo~r ne existence of the solu.,i~ns i.s t

the matrices to be inverted are nonsingular.
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4.3.2 Coordination With Nested Information Structure

Consider the case when the information of the states is incomplete

but the lower-level subsystems know the same measurement i.e. z1(k) =

z2 (k) = z(k) = H(k)x(k) + f(k) and the coordinator knows both his

measurement and all the subsystems measurement, z°(k) : z(k). Assume no

information transfer among subsystems through their controls. The

optimal strategies are derived using dynamic programming:

Uo(k) = (k)BT(k)S(k+)A(kNY(k) + B°(k)u°(k)] (4.18)

u°* (k) = P.kYk () k~!k[() ) 1 .9)

where -(k) = E~x(k)/z(k)], '°O(k) E(x(k)/z°(k)), :(k) and 2(k) are

defined as in Section 4.3.1 and

Y(k) BoT(-BG)TSA(k+)(I-BG)A
) BoT(I-BG)T(SB(k+j)-sA(k+1)]A Y(k)

- BoT(I-BG)TsB(k+1)K(,+)HA

G(k) = zYk)BTs(k+)

The optimal cost-to-go at each stage for the coordinator and the

lower-level subsystems are:

d°(k) [(k)k)x 0 s0~k k(~ L() - ° k)

(4.20)

J (k) : T(k)S(k)Y(k) ± -(k) (4.21)
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where

SW =QO+ AT(IBG)TSA(k+I)(1-BG)A-yT~y (4.22)

sBk T(f-BG)TSA(,+)(IE-BG)A + AT(I-BG)(S (k+1)-SA(k+l)]A

t- AT(IBG)TSB(k-1)K(k+1)HA-YT..OM (11.23)

sC~ MTOM TGT BTSA (,,+I )sr

+ AT[SB(.-+1)K(k+1)H-SB(k+1)2TSGA

-ATGTBTc(<+1)KC(k+1)H-SB(k"+1)]A (4.24)

p0 (k.) p0 (k+l)+ rO M

KO(k+1)CSA (k<~) + S~~)29kll

+ 2tr-(Po(k+1/k)K((k+i)H(k4.1)tSB(k41)-SC(k+l)J}

+ trK(k~)kk+1)4fP(k+/'k)H T(,K+i)-=(k+ I)

S(k) Q + (AB2](~~)G8SkIjA8Y

+~ YT2O2V. (4.26)

g (10 P(k'+1) + t-,QP(kI%) + tSK-)K'.+)HkIPk./)

+E~k1)1T(k+,) + t-(CD(k/k)-PO('-/k)I(M-Y]TY

(R + STS(k+1)(i.-8G]B(I-CMY]} (a.27)

'%K(k+1) = (k+1)P1k,)Hk+)~kl'N) (4.2S)

P(k+i/k) A(k+1)?(klk)MA+)+.(k !.9

P(0/0) E (0)

till these recursive equations can be 3olved with 4iven init,-ai or fina!.

-cnditions. The existence :ond-6,'on of the solutions is that the

miatri2es to be inverted are nonsingular.
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4.4 Constraoed D!egntral , d Structure

Section 3.4 describes why output feedback and dynamic output

I feedback are more desirable in practical applications. In this section

we will derive the necessary conditions for Stackelberg coordination

when the lower-levels choose to use Pareto optimal solution with

f constraint being placed on the controls. The cost functional of the

lower-level is

J(k) Z: 0 iJi; a'Q, L.0 1J i~l .121

J(k) = IxT(N)Q(N)x(N)

J N-I 2
1 .,,(xT(k)Q(k)x(K) + I u!T u(

where Q

I
4.4.1 Decentralized Control with InstantaneCus Output FeedbackI

When the controls are constrained to be a lineqr transforiation of

J measurement at that instant and there is no information transfer through

the control, then

ui(k) Fi(k)z 1 (k) I:0,1,2 '4,32)

and

(K) H')x(k)+i(k) i=O,1 2 (0. 3 3 )

where Fi(k) is to be determined to minimize the expected value of

I J (ui).I ...z.teepce au r
I - - - - - ..-----
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Consider the augmnented Sstem (4.1) and the measurement (4.33). Then

u'Mk = F4(k)HI(k)x(k) + F'(k)f'(k) i=0,1,2

and

x(ki-1) =CA(K) + B 2(k)F"(k)H'(k)Ix(k)
2 j=0

+ L B1 (k)F1 (k)f'(k) + v(k) (4.34)
iso

Then the recursive eauation for P(k)=Etx(k)x (k)j is given by

21 2
P(k+1) = EA(k)+T 57()i ).i~)pk)A~ 31(k) Fi(k)ji(k)T

ijo i~o
2

+ L B(k)F(k)=(K)FiTkBTk +A(ic) (4.35)
i :0

Lemma 4.1 if the linear system described by (4.1) is controlled using aI linear control policy (4.32), i=1,2 then the expected cost (4.31) i=1,2

can be expressed as

T.(J(k)1 = -!E~xT(k)S(k)x(k)1 + 1 trS(l%A(l-1)
1: k+ 1

1 ~ ftrFTlj)(a'Ri(l-i)

+ 'Uro(_ (4.36)

A where

2

2
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The necessary condition for a minimum at each step is that 'he

derivative of tChe remaining~ cost with respect to Fi(k); i=1,2 must

equal zero.

F 1*(14) = (l+lTs(k+l)Bl)l'BlTS(k+1)EA+BOFo(k)Ho+B2F2(k)H2 ]

F *(k) = -,R +BTS(k+l)B I BTS(k+1)A+Bo~o(k)o+l1.(k)H1)

p(k)H2T(u2p(k)H2T+_71- (4.39)

or

F1* (10 = -( + BOI0(k)HO)Tl (4.40)

F2()=C- + Bo~o(1K)HO)T2  (4.41)

where

Tr =Y Bj y J-'M M .~i jLJ i=1,2, j=1,2, ilj

+R BSik+1)BirlB4,Sl<+1 i=1,2

vi p)4iT(H~io(4)HiT +.:-ii-I

Lemma 4,2 If a linear system described by (4.1) is controlled using a

linear control policy (4.32) -=O then tile expected lost (4.31) i=Q is

expressed as

+(o~) 1E OT(iS1)x~()+o4(iL) S o(; ),\(i E~iI
2 * ~

j=1
('4.42)
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where

S0(k) Qo(k) HT(k)FoT(k)Rokk)F.o(k)Ho(k)

+~ CA(k) + B0 (k)FO(k)410(1k) + B 4 k F k- I )T ~oki

(A(k) + B0(kF'0 k)HO(k + B' (k)F1 k)H' N) (4.43)

At. each Step the ncessary condition for a minimum is that the derivative

of the remaining cost with respect to each element of" F0(K) must equal

zero.

F0(k) -CR + (BO+B Blo+SI 0 s tK+ I) (o.-Br Bo+-S~II 2 o)

((BO+Bi IlBO+BrB)So (k+ )(A+B'r- AT +-TH1

(H04o ll TIH4+OT2H2)T+(Bll~O-B sis~~
I-I~tjo- '.r 1 -. .Br2THOT)+

(s1r1 AT +B r~AT 2T~ttO

(HoDHoT+(HOT 1H +H'OT 2H2 )?(H0+H0T IH.Ho"'2

Theor- , j The S equenc e F-(K)} IJ.=0 ,1; I =Q , 21 ,r of the i-th

subsystem that minimizes EfjL('*)} i=0,1,,2 subject to the const-raint

(4.32) are given by the equations (4.44), (4.40) and (4.41) where it is

jassumed that the required inverses exist and

I. ?(I<+1) (A + 2 ' F2kF3(K( 3q0)"

i.: 1=

POa) is given.
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2.
2. s(k) Q + Z~rH F'~)''kH

2 2
+~ ~ (A+-]~()iTS(k+1)(A L ZBF-(k)H1 )(446

3. S0(k Q0 +. HoTTOT(k)ROFO(k)HO

2

+ (A + BOF 0(kH 0  BiFi'(kH ]S(k+l)

(A + B0FO(kHO +~ B F W(kH~i(q

SO(N) ON

To compute the cost incurred when the players use arbitrary linear,

output feedbacke control ofI the form

u'(IK) Ki(k)zl(k) (0.418)

the cost-to-go at stage k is

Ji(k) I. (.T(k)Si4(k)x(k)]+ tsik)A)

N

~+2

2

j=0
iA j

(4.49)

where

S'(k Q4(j.) + N

[- A + LZs-I-)H )W1~k-)LA + 'SK' X,&-
i=0 f:O

Sion 41) I
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The sequence (FI(k)) i=0,1,2; k=Q,11 ,...,In-1 of the coordinator and

the i-th subsystem are the solution to the discrete two-point boundary

value problem. The simple procedure to solve the equations suggested in

Section 3.4.1 is also recommended here.

4.4.2 Decentralized control with dynamic output feedback

When the controls are constrained to be alinear dynamic output

feedback where a dynamic controller of a specified order for the i-ch

subsystem and the coordinator described by

wi(k+l) = D'(k)wl(k) + -,I'(k)zi0 k) i=0,1,2(i.)

where wi e Rs' is the state vector of the controllers used, then

also

Z'() H-(k)x(k) +- N() i=0,1,2 (4I.53)

For a given integer s' (0. s1 <n) find matrices Ni(k), Fi'(k), Di'k and

M(k) such that the corresponding expecced cosr. E(JI(k)) will Oe

minimum. The cost functional to be consider is the same as in Section

4.4.1.

Consider the augmented state vector

X-(k) x- w( wTk) w(k
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then

2 2
Nk+i) :(A + + _ 5 L9i1i i() + iv(lk1) (4-54$)i=o i-O

whererwhee ~k): F i ( k ) N4i ( k ) ]

Mi(k) Di(k)J

r - In
I 2

o S.i
i=o

and

N) TF(k)HiE(k) + T;i(k). P ') W0,1,2 (4.55)

where T 1: 0]

2
n Lsi
i:o

Let ,?(k) : E~x(k~.T(k)] and the cost funcioral of the coordinator is

jo = .T(NI)Vo(N )(N)

1iE [T(k) O(kJ () + oT(k)q(k)-o (k)] (4.56)
k:o

Also, the cost functional of he lower-level subsystem is

2 2

i:1 j:1

1 -T

2

k:o i: 1

The augmented system (!1.51) and controller (.5:5) are of the same forn

as (4.34) and (4,32). Also the cost functional are the same. The

following theorem can be derived using the same argument as Theorem 4.1.
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Theorem .2 The sequences ("Fl(k)) -i=0,1,2; k ,1. ,n of tChe

coordinator and the i-th subsystem that minimize E -(k) -i=0,1,2

subject to the constraint (4.55) are given by

"0SOL (~ +'O~ - 0 0-g ) = k I ( O r ' + '0

(k) ,2 (4.5

I I- -2 t1,2~k , j=12 i 22-T-2I

- (B+ rr B +B1 C (ABrATH+

1. ~(k+I) -+ 2 2

( +AO H +H(k T H 30

+ ~ ~ O =A T BFk)Kh Ok-T - T2T '-)r.I- (4!.58)

10 (,-im~ j.i i .O2j= ,,-r

Tir= ~ ''jic Jj Ji - =

H- -2 = ,,I-i
i.T- JiT
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(+ A- + 5 F°St°(OR)° + k) (:l)

2IA iOFk1Y l ] ('1.62)
j:1

11 O(N) QON
Again the sequence (F(k)) 1=0,,,2; k :Q,,,.. ,,-1 oC the coordinator

and the t-th subsystem ire bhe solution to the discrete two-point

11 boundary valuo problem. The procedure used In Section 1ll. can be used

to solve Cor the solutions.II

As in all nonzero-sum di"feventlal games, there are a variety or

II "oti-nal solutions", since the Lower-level -.iay or may not cooperite

within their Sroup. When the lower-level subsystems, which are all

followers with respect to the ¢oordLiator or biader, desire to cooperate

_ within their group, the ?aretc optimal solutions are b.Uained. Soth

centralized mnd decentralized control structures were consIdered. The

[L main idea is the same as in Chapter 3.

.1
i



5. DECENTRALIZED STOCHASTIC STACKELBERG COORDINATION

IN AUTOMATIC GENERATION CONTROL OF INTERCONNECTED POWER SYSTEM

5.1 jnf.rodjotio

An interconnected electric energy system can be describoed as a

collection of subsystems, each of which is called a control area. Each

area is responsible for meeting its obligation to maintain the

appropriate system frequency and supply its own load demand. Also, each

area provides mutual assistance to its neighoors in accordance with the

basic operating policy of interconnected power systems C23)]. Two of the

most important aspects of system control involve the regulation of

system frequency and net power interchange. When the interconnected

network is small centralized techniques can be used quite effectively

( 19,20,333. However, in the more general case the

communication/computational costs involved in impLementing -a centralized

controller often become essential. Furthermore, 'he trend in the

utility industry is strongly to digital control, using the digital

computer for calculating jeneration changes etc.. A discrece

formulatton of tnis problem would thus seem of more Dractical interest.

interest in the dynamical asoects of load frequency control has

stimulated the application of modern control techniques to this problem,

particularly the theory of ootimat linear regulator C251. Calovic

(19,20] was the first to Cleary distinguish the steady state problem

from the transient oroblem. the procedure U-Sed is to Adicin..- the

integral of each area control error (AC'E = B! IC -<1whie'l where -i
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the t ie Itine bitas constant specified as the area frequency

charaete-isti.o.) to the system equations (Fosha and Elgerd £251 adljoin

integrals of frequency and tie l~ine flow errors). These new state

variables as well as the orizinal system state variables are Included in

t~he cost functional. As a result, all areas capable of doing so will

drive their area control errors tCo :ero in steady state provided the

system is stable. 1t is not clear from the control equations what

control actions Would be t14aken in each area if any area is not able to

control optimally.

Decentralized Stackeli'erS strategies will be jsfd to develooed a

decentralized controller, for a three area electric power system. This

new design procedure is based on a stochastic Stackelberg_- strategy

extended by introducing optimal regulation with indivi-dual :1hoice of

cos t functional to each control area. The problem now becomes a

muticriteria problem wi th multi-declion makers. This is where

differential Saines theory is relevent to define "opt imal ty". Once the

optimality is defined, we can caltculate K, (Kr is the controLler -3inl

used by the area to accomplish the required control action :ri the error

ACE) whic-h vary betw..een areas because of diff~erences 4in 4vamc ad

disturbance. Thi control laws are linear Cunc.ons of measurible ouzou",

for each cont.ro! area and do not requir* measurerienc, of' Jisturbance.

This new decentralized S ackelber- "oorititon is investiSaz-d fra

three-area inrcnetdpower sycei lotimal solutions, zu,,oprtimal

simrlifizations and SiMUlationr reasults are presented.
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L 5.2 P 5 Dynamic -

A power system dynamic model was developed in (20,25]. where it is

assumed that area buses are stiffly interconnected, and that the

deviations in frequency and scheduled power interchange are caused

solely by the load disturbances. If each area is modeled as an

equivalent electric generating system wherein a nonreheat steam turbine

is employed, then the following ecuations represent the interconnected

power system linearized about a given nominal operating point:

d (a.) = 2p ' Sptie, (5.1)

Sdt -2fi - 2Hi

d (WPti) = 1 (6S -gi Pt) (5.2)
dt 

Tti

d (Sg =_ () 6 PC,- i f) (5.3)
dt Tqi Ri

N
d (APWie,i) = LTij(6.v.- fj) (5"U)

A .CE. biaf, + 4Ptie, ,i (5.5)

The symbols are defined as fole" - cws

f V nominal system frequency

H, inertia constant

Di  system damping

T. turbine time constanc

1 T governor time constant

T,3 transmission cons"ant

j R. speed drooo

b; frequency bias constant

Ii
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ftIf frequency deviation

-/Pti turbine output deviation

6 ASg governor position deviacion

4 tie, net power flow deviation

6P control signal-command to speed changer

6?Li load disturbance

Eik plant noise

The values oC the parameters are as follows:

Pro = Prl = Pr2 2000 MW

Ho  = H H2  5 seconds

i, = D 8.33x0 -3 Pu MW/Hz

T O = Tg! = T,2 : 0.3 sec.

go 7 0.08 sec.

R° = R1  = R2  = 2"41 Hz/pu MW

Ptie,max = 200 W

.- = 30 degrees

Tij = 0.545 pu tMIW

bi = 0.425

LFor more complete definition of the model and terms see (20,251.

An appropriate formallzation of this problem involves '.fin'n he

following linear quadratic regulator problem:

state eauation x(.) : Ax(t) + Ru(c) + D/(t) + t) (3.6)

output equation y(t) Hx(t (5.7)

cost function J + J £xO u dt (5,3)

where, for each control area the sc-_ 'tec t-r

L__.. ..



IT 65

i (Afif aPti' 6Sgi ptie,i' lACE!) (lACE i =fACEidt). These new

state variables are included for the purpose of inducing the steady

It state errors (20]), the control vector ui =W , and the disturbance

vector vi :' PLI with i=1,...,n. The plant and measurement noise vector

(t) and 1(t) respectively, are modeled as zero mean mutually

independent stationary white Gaussian processes. The matrices R and Q

in the cost functional are selected in such a way that emphasizes the

Ii ACE i . For simplicity we choose- R = !.*ciere it is assumed that each area

Uhas only one plant.

5.3 Stpckelber- Coordination

[I In accordance with the basic operating policy, the desired goal is

to regulate each area control error, ACE!, to zero without using

excessive control effort. Each control area problem can be formulatea

11 as a linear regulator problem with a cost functional of its own.

Decision making by any area to obtain optimum control performance 'or

II its area will effect other areas. With multicriteria and multidecision

making we have to define "optimality". in differential games theory

"optimality" is defined in termq of the rationality assumed by tke

decision makers in computing their controls. Each area can choose a

strategy depending on the dynamics of its system, its in-'ormation and

its computaticnal caoability. Since we have more than twc areas, it

seems approoriate to apply Stackelberg coordination for decentralized

control to this problem. Designate an area to be a coordinator wno

coordinates he other areas which are viewed as f0ol'owers. The

[L
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coordinator chooses a leader Stackelberg strategy to play with the lower

level subsystems. The lower level subsystems may or may not cooperate

among themselves so they can either choose Nash rationale or Pareto

rationale to play between them.

The controllers are constrained to be of the form

u i(t) = Fi(t)yi(t) i=0,1,2 (5.9)

where y'(t) is the measurable output of each area and Fi(t) is chosen so

as to minimize the cost functions. The resultins necessary conditions

for optimality of Fi, for discrete system, are derived in Section 3.11

and Section 4.4. A simple approximation computational algorithm is also

suggested, but there is no guarantee that the algorithm will converge.

5.4 Design and Simulation Study

A three-area power system with numerical constant as given in [24]

was chosen as the basis for this study. In discretizaticn of the

system, LINSYS (11] was used. Since we are only interested in

load-frequency control, we can consider the turbine controller fast

relative to the rest of the system. 2y assumption above the time

constant of the system is approxImately I sec. (24], so we chose a

discretization interval of 0.2 sec.. After discret'zition LNSYS was

used to determine the eigenvalues, controllability, and observabilicy of

the discrete-time system. The discrete-time system with iiscretizat n

interval 0.2 sec. is stable and controllable.
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Consider a discrete version of a three area interconnected power

system:

state equation x(k+l) = Ax(k) + Bou°(k) + B1u1(k) + B2u2 (k)

Ew(k) + v(k) (5.10)

measurement equation yi(k) H'x(k) + ?i(k) i=0,1,2 (5.11)
n-I

cost function j T(n)Qi (n)x(n) + , (xT(k)Qi x(k)

+ uiT(k)Riui(k)) i=0,1,2 (5.12)

where for each area the state vector is

[ The control vector is ui = Pci and the disturbance vector, is w, ' ?Li

[ where i=0,1,2. The plant and measurenenc noise vectors v(k) and Hi(k)

are zero mean mutually independent stationary whi-e Gaussian processes

[ with 0.001 per unit standard deviation. The atr-i-es appearinz in the

cost function are defined as in the continuous case. The measurable
I

outout vector is formed as a linear combination of states required to

have zero steady-state values fti. The numerical value of The

element of matrices appearing in (5.10) are given in Appendix 3. The

- object is to design a linear feedback control u4(k) i=O 1,2 to

compensate the effect of constant or slowly varying disturbance wC4'

using only the output yi(k). For any constant or slowly varyins

diszurbance ) sing the Smith/Davidson C5 oproac, consider toe

augmented system:

I (k+l) = ( B ' u + i:O+ ,2 (5.23)

j ?~~~~i~k f2k .'C) iO12~s

(kX '-' -- 7
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where

The linear control law uL(k) is

/U iw = I~)^ilK)i=,1,2 (5.15)

where F()is determined using the decentralized stochastic Stackelberg

method.

Area 0 is cnosen to be coordinator or leader. Then area I and 2

are followers with respect to area 0. When the lower, .e-vel subsystems

choose to play Nash rationale the resulting controllers are as defined

in Section 3.4.1. When the lower level subsystems chcose t~o play ?areto

rationale the resulting controllers are as defined in Section [.4.1.

The matric- s R and &- appearins in tecost functional (5.12,) are

selected in suchi a way that the cost function for each a-ea is

ji = V4IT(<I +-/? ( ~1 4 C 1 k+0 + u\) i:01,

k=1

So far no convergence condIin for this al~ori:hnm have beer

fourd, butk as with most alzoritihms of thi-Js type It is fel-It th iat

convergence Jepends on the -,nitial ;uess. A test. 'or satisfactorv

convergence in ,ost. is inserted when the compucati.onal pr-Ccedure is

irnplementea. The irerati'ie procedure converzed -,n .cost. F'ron the lest
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results, one might hope that it would always converge to the 'optimal

psolution'. Unfortunately for certain systems the limiting values

produced depended on the initial guess. In these cases, the algorithm

ft converged to a solution to a two point boundary value problem one of

whose solutions is the optimal. it is the nature of specific optimal

problems to have local as well as global minima. Since uniqueness has

lj not been proved, all solutions to the boundary value problem must be

found to determine the global minimum. This difficulty with uniqueness

HI could be anticipated since the necessary conditions are local. One must

therefore find a good starting point if the procedure is to converge to

Pthe optimum.

[Ii The computational algorithm for the solution of this problem

f] suggested in this work can not guarantee satisfactory results. For this

particular example the algorithm has exhibited rapid convergence so no

more exotic techniques have been tried. The method developed in this

work is suitable for solving finite time problems. Unnecessary

Fcomplexity is particularly burdensome in these problems as the time

[ records of all the controller gains must be stored. The algorithm

proposed can provide solutions for many problems at a reasonable cost,

but it should be noted that the computer time will increase as the state

dimension of the system, the number of Sairs and the number of time

intervals increase.[2
ii
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Fig 5.1 shows the curves of frequency and tie-lie varia.ions for a

free system response upon a I' step-load change in area 0. Fig 5.2

shows the system response under output feedback Stackelberg coordination

with the lower-level using Nash rationale within their group. The

diturbance is the same as in Fig 5.1. Fig 5.3 shows the system response

under output feedback Stackelberg coordination with the lower-level

using Pareto optimal within their group, ii is chosen to be 0.5. The

disturbance is the same as in Fig 5.1.

From the results of the comouter simulation study., it is concluded

that in this particular example decentralized stochastic Stackelberg

coordination retains favourable transient features. However, Che

disturbed area still has a small steady-state error in deviation of

frequency (.006 Hz.). A ratio of the coefficient of weighting matrices

Qi and Ri plays an important role in system response. It should be

noted that improper choice of R1 and Q1 can make the system unstable or

this algorithm may not give desired system response. However, a good

choice of R and Qi depends on the system. By trial and error the

suitable values can be selected. However, the .,.,,,,on of these

control sequences in practice is comolex, since .he controls vary wt,
Cime. Therefore we suggest a suboptimal simplification of the control

These suboptimal simplifications are selected from he constant part of

each control seauerces, respectively, and are used throughout the entire

period. Fig. 5.4 shows the olots of the optimal gains of area 3,1,and

2. The constant za-ins of each area are chosen to be (-.,-.39),

(-.09,-.6) and <-,09,-.5) respectivey. rig. 5.5 ahows Ihe s:"aen



II 71

-. - -U.-____,_

--a *A

, -xta"

.1 -a. - ;\s

as;a
I: 24.E m : i

A.

..-- a-

m3 . I - "-4m. Ir. --" -/t -- -r rr --.-

Ia ICN8 w T ,

Fig.5.1 Free system response of area 0,1,2

-- 'h fi' ........... & ? i



72

aa Iskasaa4 1

U~ e3

e ,



P.u . 73

X . 2. ..........

.- 4--. 1\

I____ ___

93. -ta

-lI '-. 2LC --

____I I __ ""

- - r ,- o I

* 
2 IIil f r

)l l 

- l  

l- I ....... ... _ _ _

.-- i \-,k-I-Xi

,-4. -t l I l / Vl_ _ _ _

2 
_ _ 

.>_ -Q

Fig.5 .3 Testi repos of -ae,, nerdcrtaie

-, .._=-, \/ i I-- __.__

-iI i

l ivI SubIsystems

Fig. 5.3 .the system response oz: area 0,1,2 under deceertrali:edV. Staokelberg coor'dination with ?ar'eto .'a. inale among
lower-level subsystems.

-- Lf , ....,F 
__ _______________



741

p~u

a~ in $a Ad o

uk.in a.s- -

-4.~- -A.I 1

T Li

Stackelbe-g .-ordinat .4,n



imU.

3.~n4 X&M1

0.3- -. A

~ _______

.1 .*75-

3.In Itsim

T n

Fig5- Te sytu. rsos faea012udrsbpia

s .m4 .& c at o on to

pi ...... tie'i



76

responses under suboptimal simplification. The responses do not have

significant difference from the responses under optimal solution.

5.6 ConcIustons

In this chapter, an attempt to develop a new decentralized linear

regulator approach for load-frequency control in a three-area

interconnected power system has been discussed. The method is based on

decentralized stochastic Stackelberg coordination. Each control area

uses a feedback control based only on measurements from its own area.

Also, the area is free to select an appropriate cost function. The

extended theory is applied to a discrete model of a three-area

interconnected power system. A numerical design method utilizing a

proportional-plus-integral control structure is suggested. From the

studied example, this method gives satisfactory results. The adjustment

of a desired speed in dynamic response is possible by adjusting the

elements of the weighting matrices Qi and Ri. Unfortunately the

stability and convergence of the procedure has not been established Yet.

Since constant control laws are preferable in practice, we also suggest

a suboptimal simplification in the controls which performs quite well in

our particular example.
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6. CONCLUSIONS

In the first part of this thesis, we have reviewed the equilibrium

solutions of a two-person LQNZSDG in which we have modelled the effect

of random disturbances by including an additive zero mean white noise in

the state dynamics, whose statistics are not necessarily known to the

players. Both cooperative and noncooperative solution concepts, i.e.

Pareto optimal, Nash equilibrium and Stackelberg equilibrium, are

examined. Results available in the literatures indicate that solutions

for this class of game, and for different strategies, are affine for

each player.

In the second part of this thesis, an interconnected set of linear

discrete-time stochastic systems, where N decision-makers try to

minimize different criteria, was introduced as an extension of

differential game theory. The organizational form of the system permits

one decision maker to be the coordinator or leader and the dIecis ion

makers for the other subsystems are all followers with respect to the

coordinator. The followers may or may not cooperate among themselves,

so they can select Nash strategy or ?areto optimal with respect to the

other second level decision makers. Centralized and decentralized

control structures were considered. A decentralized structure is more

realizable since the control sequences are functions of measurable

output only. The equilibrium solutions are obtained via dynamic

programming. The solutions of the centralized structure , botn perrfect
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and nested information, can be obtained backwards in time with given

final conditions. But decentralized constraints lead to a discrete

two-point boundary value problems. A simple procedure to solve this

problem is suggested but the conditions for convergence are not yet

available. As with most problems of this type, the solutions depend

f very much on the initial guess.

[ Fina.ly, decentralized Stackelberg coordination is applied to a

three-area interconnected power system. This method allows each control

[ area to select an appropriate cost function and feedback only its own

area measurement which is more realistic in practical situation. The

design procedure is emphasis on the proportional plus integral feedback

j control. The study gave a satisfactory results.

Further study of 'decentralized Stackelberg coordination should

include the stability and convergence condition of the procedure.

Comparison of this control with other controls is also suggested.

Another interesting extension of this work would be to investigate the

stochastic Stackelberg coordination of nonlinear systems. Since the

differential dynamic programming failed io obtain the solutions to

N-person nonzero-sum Nash equilibrium solution, the same oroblem still

exists for using this method to solve nonlinear stochastic Stackelberg

coordLnation.

!
I
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f APPENDIX I

I Consider augmented system (3.12)

.,(k+l) =A(k)x(k) + 20(k)u0 (k) + 81(k)u1(k)

+ B2(k)u2(k) + v(k)(A1)

j then

E(x(k+l)/z(k)=xl = Ax(k) + S0u0 (k) + B u1(k) + B2u2(k) (A.1.2)

f and quadratic cost (3.114)

Ji(ui) - -!XT()iNx

+1- -Z(kQi .xk)+uTkRikui(kn A1.3

k=o

.Assume that the expected cost-to-go at stage k is

EV(k)/x(k)] = m .xT(k),- i

20 k)il,2 (A.1.4)

E V(k)/x(k)] r ~ain)Bu~)8u~)+ook)~~ 4 1

Ul
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Using (A.1.7) in (A.1.5) to obtain &-(k) that minimize tChe expected

value of the cost function

u (k - Ri~iT ik1 B -5BTS±(kI)Ax N)+BJuj (k) +Bouo (k))

i=1,2 iij (A.1.8)

Let

LIMk (R'+B4'Si(k+l)Bi]-lBiTsi(k+l)(Ai9

Then (A.1.8) becomes

For 2-subsystems solve for ul(k) and u2(k)

u1 (k) = -,l(k)Ax('K)+Bouo(k))(.1.)

and

u2(k) -9-(k)(Ax(k)+BoUo(k)) (A. 1,12)

where

* Using (A.1.11) and (A.1..12) in (A.1.1) and defining

A (k) A + B InsA + B2~i A .4

B(k B0  BIo B B2A (A. 1.15)

p We have

-o Now

I ~~~~(IP'(k)x(k)) = xT(k)3 0 (k)x(k) +~"k A1.7

Ther

1~OX\ . T O ( 1 oT 0C0o~~u ,ok,),

u ( k)

U (k)
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At k:N,

V°( =(A.1.19)

at k=k+l

E(V°(k+1)/x(k)] = (A(k)x(k)+B(k)u°(k))Ts°(k+1)(A('-)x(k)+B(k~u°(k))

1 t ) ) (k+!) (A.1.20)

Using (A.1.20) in (A.1.18) we obtain

u°*(k) Ro_'-[BTS(k+1Y)-IBTSo(k+1)x(k) (A.1.21)

Let

L°(k) (RO+BTsB(k I)]-"Ts(k+I)Y (A.1.22)

Then

u0 (k) = -L(k)x(k) (A.1.23)

To obtain recursive equation for So(k), use (A.1.23) in (A.1.18)

and after some algebra

S0 (k) = Q°(k) + (A.I.24)

SI(N) = Q°(,I) (A.1.25)

Y°(k) = y°(k+1) + tr S°(k+1),\(k) (A.1.26)

To(N) = 0 (A.1 .27)

To obtain recursive equations for S4(k) i=l,2, use (1.1.23),

(A.1.11), (A.1.12), and (A.1.5). after some algebra

S'(k) Qi(k) + (A-LOL))T~iT(k)R~i(k)(A-3oto)

+ (A- ,L)S1 (k+1)(.-IL ° ) L=1,2 (A.1.23)

S(N) Q4(0) 1=1,2 (A.,.29)

I(k)= Ti1(k+1) + trS-(kI)1(k) (A.130)

i = 0 ;=1,2 (A..310
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APPENDIX 2

Given a stochastic M1arkov sequence of state vector (x(k)}

x(k4.1) =A(k)x(k) + B0(k)u0 (k) + B1(kul(k) + B ()u 2(k) + v(k)

(A.2.1)

where ui(k), i=0,1,2 are deterministic inputs, v(k) random, and

measurements given by

z1(k) z() = H(k)x(k) + c(k)(A.2

z0(k) D zl(k);z0 (k) = H0(k)x(k) + f k)(A.2.3)

The assumptions are the same as. given in Section 3.2. Define

Z*(k) = ZlT(O),... ,zlTk)T (A.2.4)

0* .. MI (A.2.5)(k) Ez0'(O),..,

=Xk E~xO,)/zo*(k)1 (A.2.6)

P(k/k) = ~~)~k)xk4k)/z*(k)) 0A.2.8)

The recursive 4-elations define the conditional expectations for lower

level assumptions given by

~(k+/k) A~Y~Z~) +B 0(kuON) + Bl(k)u1 (k) + S2(.k)u2 (k) (A.2.10)

?(k+l/k) =A(k+1)P(k/K)A(k.1) + A(k) (A.2.11)

x(+1 = (+/)+ (k-)zk1-(k+1/k+1k) (A.2.i2)

?(k+i/k4-1) [ I-K(k-n)i(k+I1?(k+I/k)0 (A.2.14)

P(0/0) !:(0) . (A.2.I5)

Also

EU-<(k+1)/z*(k)j = 3c(k+l) V-x(k) + 20 uo(k) 1 u (k '2u

(A.2. 16)
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CovC^X(k+])/z*(k)J ~~)HkIPklkH(,,+(,,)Tk,

(A.2. 17)

The recursIve relation deflining the conditional expectation for 'the

coordinator subsystem is given by

K&(k+1) = OklkHTkHoklPkl/HT

P0(k+1/k) =A(k+l)?o(k/k)AT(k+l) +,\(k)

?0(k+I/k+l) = (-Okl)Oklk

P"(0/0) = Z(O)

Also

EC(O(k+1)/z*(kc)] = AR0(k + Bouo(k) + B1u1 (k) + B2u2(k)

Cov(xo(k+l)/z*(k)] ) kl(OklPklk)o~~)-(~)KTk,

Assume at stasre k the cost-to-go for the i-th subsvscem is

i*(k z Tk)Si(ky-Xk) + 'yi (k) (A.2. 18)

The optimial strategies for subsystem i are jjiven by

ui(k) arS #nE~T,-Q(~~)3
ul (k)

At k=N

+ ~t'Q~(J)P~L~f)(A.2. 20)

Ui(k.) arg Tin iT j kxk) 3 r~()()-~)(k) u k

ul'(k) -
<Ol)+ r'(C-? 7

+ -I(A.(k)+2-ou0(k.).aBjuj(!k)]TSi(,+

+ +tr<(k)+B)Ki(0kBl) (k)P?± (ki)il(+)ck.i

+ rLk1 (..'



The minimizing control uL(k) is

u'(k) _(Ri(k)+BiTsi (k+1 )B'1]lBiTSi(k+1)EA'X(k)+Bouo(k)+BJui(k)I

j (A.2..22)

Recall the difinition of LIMk in (A.1.9)

ILi(k) =(RiQ1%)+BiTSi(k+l)Bi)lB"Si(k+l) (..3

I Then

For 2-subsystem solve for u1 (Id and u2(k)

ul(k) = -jk)(A-X(k)+Bouo(k)] A2.5

u2(k) = -,2 (k)(A^X(k)+Bouo(k)3 (A.2.26)

f where

Assume that at sta'Se k the cost-to-go for the coordinator subsystem

is

_LO*k -xok KSAM S'TQ (k k'do J ( k)Q

At k=M(A. 
2.28)

UUC -* W 2 (Idin)IT~)o(-xk)I

(A .2 .29)

For any matrix 1' 13.121

I .~~(o(k+ 1 k)(1 ) o*()f~Y1~(c./

r cx,(k+i/k)+K(k+1)Cz(k+l )-H(k%+I )'2(k+1I )/103l J/z 04(k)) (A2-0
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j where

'K(k+1) = PO(k+l/k)HT(k+I )(EH(k+! )pO(k<+1/k)HJ~ I -(k+)]-l (A.2.31)

Et NEf17oT (k+I / ) =x(k+l)/zo*(k)} + O,(k+l)TPK(k+I)Hkl

I (A.2.32)

EC^ (k+ 1 )rC(k+ I) /zo* (k)]

1 ;T(k+l)r (k~1) +2KTklr~~)~~)R~~)-~~)

(A.2.33)

Expand (A.2.29) using (A.2.32) and (A.2.33)

u0(k

1- -RooTl)sA C2B)O)t+1 .

+ zoT(k+l)-SCK(k+I)H ).x~~)-~~

(iT 1 -(k) + R(-,SKkiHkltok!-l~)

1 2. tr(K(k+)(H(k+)O(k/k)H~ T(k+; 4 T )~o...],

Recall that 
(A .2 34)

(A.2.35)
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where

B~)=BOWk - Bl(k)61(k)GO(k) -B(k),C
2 (k)BO(k) (A.2.36)

Let

G(k) =B 1(k)J (k) + B2(k 2(k) (A. 2.37)

Then (A.2.35) becomes

R0(k+l) =(1-G(k))A(kY-X0 (k) -G(k)A(k)('X(k)-^X 0 (k)) +^~~ok

(A .2.38)

and

R(k+l) (1-G(k))A(kY*'0 (k) -(I-G(k))6X(k)( X(k) x0() + '(~ok

(A.2.39)

x~k~)-R~k~l A~)(^~k)-x'ok))(A.2.40)

Substitue (A.2.40) in (A..2-34) and differentiating u (k)W is given by
u 0 *(k) -2 0 (k)Y(k)YX"'(k) -Akc.k)()~o)J(A.2.411.

where

+B(kSA) ~

Y(k) ='T(k)SA(k+l)(k)(k)A+k

- T(k)SB(k~l)K(k1i)H(klI)A(k)

The recursive equations for SA, 5B pSC, -60 (k) are obtained by
substituting u 0*(k) back in (A.2.!40)

4 SA~~SAW = Q0(k) + AT(k)(:T-G(k))TSA (k-+1), Gk)(~ -

(A4.2.42)

+B AT(k)(G( k) )(s (k))A(,)G(

-Ar(k)(T-G~k))T(S8(k+;~ )-S (ll() v~k~k)(<

(A. 2.1~13)
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SCM = - MTkO(kM(k) +AT (k)GT(Ic)S (k+l)GWW)Ok

+ AT (k)(I-K(k1)Hoj,+ )TSC (k l)I-(IK)(k)0A~k

al1 - AT (k)GT(k)(SB(k+l)_ sk0~+H~~)Ak BA..4
1 00 = SO~+04 tr-Q0 (k)P0 (k)

<+))(A(k+I )+SC(k+l )-23B(k+)

(A.2.45)

To obtain the recursive equation for S'(k of the i-ch subsystemn.,

jjsubstitue uo* (k), ul(k) back in (A.2.21)

(k(k QLk )+A( ^ ( k k

11i=1,2 (A.2.46)

Iii
L+ trS-(kk!)Kp(k/)(.(k')(%-,y-i kl+(k))T),OT(k

(A .2 .47)
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